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Abstract
Mobile is an extension of the .NET Common Intermediate Lan-
guage that supports certified In-Lined Reference Monitoring.
Mobile programs have the useful property that if they are well-
typed with respect to a declared security policy, then they are
guaranteed not to violate that security policy when executed.
Thus, when an In-Lined Reference Monitor (IRM) is expressed
in Mobile, it can be certified by a simple type-checker to eliminate
the need to trust the producer of the IRM.

Security policies in Mobile are declarative, can involve un-
bounded collections of objects allocated at runtime, and can re-
gard infinite-length histories of security events exhibited by those
objects. The prototype Mobile implementation enforces proper-
ties expressed by finite-state security automata—one automaton
for each security-relevant object—and can type-check Mobile pro-
grams in the presence of exceptions, finalizers, concurrency, and
non-termination. Executing Mobile programs requires no change
to existing .NET virtual machine implementations, since Mobile
programs consist of normal managed CIL code with extra typing
annotations stored in .NET attributes.

Categories and Subject DescriptorsD.1.2 [Programming Tech-
niques]: Automatic Programming; D.2.1 [Software Engineer-
ing]: Requirements/Specifications; D.4.6 [Operating Systems]:
Security and Protection—Access controls; F.3.1 [Logics and
Meanings of Programs]: Specifying and Verifying and Reasoning
about Programs—Specification techniques; K.6.5 [Management
of Computing and Information Systems]: Security and Protection

General Terms Security

Keywords program rewriting, reference monitors, execution mon-
itoring, in-lined reference monitoring, security automata
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1. Introduction
Language-based approaches to computer security have employed
two major strategies for enforcing security policies over untrusted
programs.

• Low-level type systems, such as those used in Java bytecode
[21], .NET CIL [9], and TAL for x86 [23], can enforce im-
portant program invariants such asmemory safetyand con-
trol safety, which dictate that programs must access and trans-
fer control only to certain suitable memory addresses through-
out their executions. Proof-Carrying Code (PCC) [24] general-
izes the type-safety approach by providing an explicit proof of
safety in first-order logic.

• Execution Monitoringtechnologies such as Java and .NET stack
inspection [14] [21, II.22.11], SASI [11], Java-MAC [20], Java-
MOP [4], Polymer [1], and Naccio [12], use runtime checks
to enforce temporal properties that can depend on the history
of the program’s execution. For example, SASI Java was used
to enforce the policy that no program may access the network
after it reads from a file [10]. For efficiency, execution monitors
are often implemented asIn-lined Reference Monitors (IRM’s)
[27], wherein the runtime checks are in-lined into the untrusted
program itself to produce aself-monitoring program.

The IRM approach is capable of enforcing a large class of pow-
erful security policies, including ones that cannot be enforced with
purely static type-checking [17]. In addition, IRM’s can enforce
a flexible range of policies, often allowing the code recipient to
choose the security policy after the code is received, whereas static
type systems and PCC usually enforce fixed security policies that
are encoded into the type system or proof logic itself, and that there-
fore cannot be changed without changing the type system or certi-
fying compiler.

But despite their power and flexibility, therewriters that au-
tomatically embed IRM’s into untrusted programs are typically
trusted components of the system. Since rewriters tend to be large
and complex when efficient rewriting is required or complex secu-
rity policies are to be enforced, the rewriter becomes a significant
addition to the system’s trusted computing base.

In this paper, we present Mobile, an extension to the .NET CIL
that makes it possible to automatically verify IRM’s using a static
type-checker. Mobile (MOnitorable BIL with Effects) is an exten-
sion of BIL (Baby Intermediate Language) [15], a substantial frag-
ment of managed .NET CIL that was used to develop generics for
.NET [19]. Mobile programs are CIL programs with additional typ-
ing annotations that track an abstract representation of program
execution history. These typing annotations allow a type-checker
to verify statically that the runtime checks in-lined into the un-
trusted program suffice to enforce a specified security policy. Once
type-checked, the typing annotations can be erased, and the self-
monitoring program can be safely executed as normal CIL code.
This verification process allows a rewriter to be removed from the
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Figure 1. A Mobile load path

trusted computing base and replaced with a (simpler) type-checker.
Even when the rewriter is small and therefore comparable in size
to the type-checker, type-checking constitutes a useful level of re-
dundancy that provides greater assurance than trusting the rewriter
alone. Mobile thus leverages the power of IRM’s while using the
type-safety approach to keep the trusted computing base small.

Figure 1 summarizes a typical load path on a system that ex-
ecutes IRM’s written in Mobile. Untrusted, managed CIL code is
first automatically rewritten according to a security policy, yield-
ing an annotated, self-monitoring program written in Mobile. The
rewriting can be performed by either a code producer or by a
client machine receiving the untrusted code. Since the rewriter,
and therefore the self-monitoring program, remains untrusted, the
self-monitoring program is then passed to a trusted type-checker
that certifies the code with respect to the original security policy.
Code that satisfies the security policy will be approved by the type-
checker, and is therefore safe to execute; code that is not well-typed
will be rejected and would indicate a failure of the rewriter.

In this paper we focus on robust certification of Mobile code.
Techniques for efficient rewriting are left to future work, but we
describe a näıve rewriter and suggest some strategies for optimiz-
ing it in §3. Our prototype implementation of Mobile consists of a
type-checker that verifies sound rewriting with respect to security
policies expressed asω-regular expressions. The implementation
can verify both single-threaded and multi-threaded managed CIL
applications, and it supports language features beyond those mod-
eled by BIL, such as exceptions and finalizers.

2. Related Work
Type-systemsλA [31] andλhist [28] enforce history-based security
policies over languages based on theλ-calculus. In both, program
histories are tracked at the type-level using effect types that repre-
sent an abstraction of those global histories that might have been
exhibited by the program prior to control reaching any given pro-
gram point.

Mobile differs fromλA andλhist by tracking history on a per-
object basis. That is, bothλA andλhist represent a program’s history
as a finite or infinite sequence of global program events, where the
set of all possible global program events is always finite. Policies
that are only expressible using an infinite set of global program
events (e.g., events parameterized by object instances) are there-

fore not enforceable byλA or λhist. For example, the policy that
every opened file must be closed by the time the program termi-
nates is not enforceable by eitherλA or λhist when the number of
file objects that could be allocated during the program’s execution
is unbounded. In object-oriented languages such as the .NET CIL,
policies concerning unbounded collections of objects arise natu-
rally, so it is not clear howλA or λhist can be extended to such set-
tings. Mobile enforces policies that are universally quantified over
objects of any given class, and therefore allows objects to be treated
as first-class in policy specifications.

PCC has been proposed as a framework for supporting certify-
ing rewriting using temporal logic [3]. The approach is potentially
powerful, but does not presently support languages that include ex-
ceptions, concurrency, and other features found in real program-
ming languages [2, p. 173]. It is therefore unclear whether proof
size and verification speed would scale well in practical settings.

CQual [13] and Vault [7] are C-like languages that enforce
history-based properties of objects by employing a flow-sensitive
type system based on alias types [29]. Security-relevant objects in
CQual or Vault programs have their base types augmented with
type qualifiers, which statically track the security-relevant state of
the object. A type-checker then determines if any object might
enter a state at runtime that violates the security policy. Vault’s
type system additionally includes variant types that allow a runtime
value to reflect an object’s current state. The Vault type-checker
identifies instructions that test these state values to ensure that those
tests will prevent security violations when the program is executed.

Fugue [8] is a static verifier based on Vault that uses programmer-
supplied specifications to find bugs in .NET source code. It verifies
policies that constrain the use of system resources or that perscribe
protocols that constrain the order in which methods may be called
on objects. Fugue supports any source language that compiles to
managed .NET CIL code, but it does not support exceptions, fi-
nalizers, or concurrency. It additionally lacks a formal proof of
soundness for its aliasing analysis and type system.

Inspired by CQual, Vault, and Fugue, our work scales these
ideas up to a large existing programming language—the full man-
aged .NET CIL (minus reflection)—while providing a formal proof
of soundness. In scaling up to a larger-scale language, we adopt
a somewhat different approach to tracking object security states
at the type level. CQual, Vault, and Fugue assign linear types to
security-relevant objects (and, in the case of Vault, to runtime state
values), and use aliasing analyses to track changes to items with
linear types. However, it is not clear how such analyses can be ex-
tended to support concurrency or to support an important technique
commonly used by IRM’s to track object security states, wherein
security-relevant objects are paired with runtime values that record
their states, and then such pairs are permitted to leak to the heap.
Existing alias analyses cannot easily track items that are permitted
to leak to the heap arbitrarily, or that are shared between threads.

We therefore take the approach of L3 [22], wherein linearly-
typed items are permitted to leak to the heap by packing them into
shared data structures with limited interfaces. These shared object-
state pairs, calledpackages, can be aliased arbitrarily and are not
tracked by the type system. Mobile provides trusted operations for
packing and unpacking linear-typed items to and from shared pack-
age objects. To perform any (security-relevant) operation that might
change a value with linear type, it must first be unpacked from any
package that contains it. As with ownership types [6, 5], packing
and unpacking operations are implemented as destructive reads, so
that only one thread can perform security-relevant operations on a
given security-relevant object at a time. Mobile’s type system and
the CLI permissions system are both leveraged to maintain invari-
ants linking an object to an accurate runtime representation of its
state.



3. Overview
A Mobile security policyidentifies a set of security-relevant object
classes and assigns a set of acceptabletracesto each such class.
A trace is a finite or infinite sequence of security-relevantevents—
program operations that take a security-relevant object as an argu-
ment. Our implementation expresses security policies asω-regular
expressions over the alphabet of events, but the formalisms pre-
sented in this article can be leveraged to support alternative policy
languages as well. A Mobile programsatisfiesthe security policy if
for every complete run of the program, (i) if the run is finite (i.e., the
program terminates), the sequence of security-relevant events per-
formed on every object allocated during that run is a member of the
set of traces that the security policy has assigned to that object’s
class; and (ii) if the run is infinite (i.e., the program does not ter-
minate), at each step of the run the sequence of security-relevant
events performed so far on each security-relevant object is a prefix
of a member of the set of traces assigned to that object’s class.

For example, [8, p. 5] proposes a security policy involving a
WebPageFetcher class for which proper usage is to call theOpen
method to acquire the resource, theGetPage method to use the re-
source, and theClose method to release the resource. A Mobile
policy that requires programs to open web pages before reading
them, allows at most three reads per opened page, and requires
programs to close web pages before the program terminates (but
allows them to remain open on runs that never terminate), might
assign(O (G ∪ G2 ∪ G3) C)ω as the set of acceptable traces for class
WebPageFetcher (whereO, G, andC denoteOpen, GetPage, and
Close events, respectively, andω denotes finite or infinite repeti-
tion). Note that this policy can only be enforced by a mechanism
that tracks events at a per-object level.

Although Mobile security policies model events as operations
performed on objects,global eventsthat do not concern any par-
ticular object can be encoded as operations on aglobal objectthat
is allocated at program start and destroyed at program termination.
Thus, Mobile policies can regard global events, per-object events,
and combinations of the two.

For example, one might modify the example policy above by ad-
ditionally requiring that at most ten network sends may occur dur-
ing the lifetime of the program. In that case, the global object would
additionally be identified as a security-relevant object, aSend
method call performed on anySystem.Net.Sockets.Socket ob-
ject would be identified as a security-relevant event for the global
object, and the global object would be assigned the set of traces
denoted byε ∪ S ∪ S2 ∪ · · · ∪ S10 (whereS denotes aSend event).

A rewriter that produces self-monitoring programs from un-
trusted CIL code is expected to produce well-typed Mobile code,
so that the policy-adherence theorem can be used to guarantee that
it is safe to execute. For this rewriting task to be feasible, Mobile’s
type system must be flexible enough to permit rewriters to insert
runtime security checks—well-typed code that tracks the state of
security-relevant objects at runtime, testing aspects of the state that
cannot be verified statically. To that end, Mobile supports apack
operation that pairs a security-relevant object with a runtime value
(e.g., an integer) representing an abstraction of the object’s cur-
rent state, and that encapsulates them into a two-field package ob-
ject. Mobile’sunpack operation can be used to unpack a package,
yielding the original object that was packed along with the runtime
value that represents its state. Mobile programs can then test this
runtime value to infer information about the associated object’s
state. Bothpack andunpack are implemented as CIL method
calls to a small trusted library (about ten lines of C# code).

To keep type-checking tractable, Mobile does not allow security-
relevant operations on objects that are packed. A package class’s
two fields are declared to beprivate so that, to access a security-
relevant object directly and perform operations on it, it must first

be unpacked. While unpacked, Mobile allows only limited alias-
ing of security-relevant objects—none of their aliases can escape
to the heap. To enforce this restriction, theunpack operation is
implemented as a destructive read, preventing the package from
being unpacked again before it is re-packed. Packages, however,
are permitted to escape to the heap and to undergo unlimited alias-
ing. These restrictions allow the type-checker to statically track
histories of unpacked objects and to ensure that packed objects are
always paired with a value that accurately reflects their state. When
an object is packed, it is safe for the type-checker to forget whatever
information might be statically known about the object, keeping the
type-checking algorithm tractable and affording the rewriter a dy-
namic fallback mechanism when static analysis cannot verify all
security-relevant operations.

Whenpack andunpack are implemented as atomic opera-
tions, Mobile can also enforce security policies in concurrent set-
tings. In such a setting, Mobile’s type system maintains the invari-
ant that each security-relevant object is either packed or held by
at most one thread. Packed objects are always policy-adherent (or
their finalizers must bring them to a policy-adherent state at pro-
gram termination; see§5), whereas unpacked objects are tracked
by the type system to ensure that they return to a policy-adherent
state before they are relinquished by the thread.

Implementingpack andunpack as atomic swaps is a some-
what blunt approach, but it is still powerful enough to support use-
ful and effective rewriting strategies. Using the above operations, a
näıve rewriter can implement state-based histories by simply repre-
senting security-relevant objects as packages. Whenever a security-
relevant operation is to be performed, the rewriter would insert code
to first unpack the package and test the object’s runtime state, then
perform the security-relevant operation only if the test succeeds
(possibly terminating otherwise), and finally repackage the object
with updated state.

This strategy suffices to implement any state-based history but
might result in inefficient code if security-relevant operations are
frequent. Thus, Mobile’s type system also makes it possible to
avoid some of these dynamic operations when policy-adherence
can be proved statically. For example, a more sophisticated rewriter
could in some cases insert code to perform numerous security-
relevant operations consecutively without any dynamic checks. In-
stead of dynamic checks, the rewriter could add typing annotations
that prove to the type-checker that the omitted checks are unneces-
sary for preventing a security violation. Substituting annotations for
dynamic checks in this way is often possible in straight-line code
or tight loops that do not leak security-relevant objects to the heap.
However, when objects do escape to the heap, the type system is
not sufficiently powerful to track them and dynamic checks would
usually be necessary in order to prove that a security violation can-
not occur. Thus, Mobile’s type system is sufficiently expressive that
rewriters can avoid some but not all dynamic checks.

Our implementation of Mobile models security policies as
finite-state security automata. This approach is appealing because
it is simple, practical, it introduces minimal extra state to untrusted
programs, and it seems to cover most of the enforceable secu-
rity policies discussed in the literature. However, the formalisms
presented in this paper do not assume any particular method of
representing object states at runtime. Rather, we parameterize the
framework in terms of arbitrary state representations and state tests
so that alternative implementations can be realized in the future.
For example, future implementations might track object states us-
ing LTL expressions or even by recording an object’s complete
history at runtime. Thus, Mobile constitutes a framework general
enough to reason about many different in-lining strategies used by
IRM’s.



I ::= ldc.i4 n integer constant

I1 I2 I3 cond conditional

I1 I2 while while-loop

I1; I2 sequence

ldarg n method argument

I starg n store into arg

I1 . . . In newobj C(µ1, . . . , µn) make new obj

I0 I1 . . . In callvirt C::m.Sig method call

I ldfld µ C::f load from field

I1 I2 stfld µ C::f store into field

I evt e exhibit event

newpackage C make new package

I1 I2 I3 pack pack package

I unpack n unpack package

I1 I2 I3 condst C, k test state

I1 . . . In newhist C, k state constructor

v values

I ret method return

Figure 2. The Mobile instruction set

4. A Formal Analysis of Mobile
4.1 The Abstract Machine

Figure 2 gives the Mobile instruction set. Like BIL, Mobile’s syn-
tax is written in postfix notation. In addition to BIL instructions,1

Mobile includes

• instructionevt e, which performs security-relevant operatione
on an object (wheree is some unique identifier, such as “open”,
that we associate with each security-relevant operation),

• instructionsnewpackage and newhist for creating pack-
ages and runtime state values,

• instructionspack andunpack for packing/unpacking objects
and runtime state values to/from packages,

• instructioncondst, which dynamically tests a runtime state
value, and

• the pseudo-instructionsv and ret, which do not appear in
source code but are introduced in the intermediate stages of the
small-step semantics presented in§4.2. (Instructionv is a term
that has been reduced to valuev, and instructionret pops the
current stack frame at the end of a method call.)

These abstract instructions model real CIL instructions. For ex-
ample, if calls to methodm are security-relevant operations, the
CIL instruction that invokesm on objecto is modeled by the
Mobile instruction sequence:o evt em; o callvirt C::m.Sigm. A
description of how our implementation models other CIL instruc-
tions is given in§5.

Figure 3 provides Mobile’s type system. Mobile types consist
of void types, integers, classes, andhistory abstractions(the types
of runtime state values). The type of each unpacked, security-
relevant objectC〈`〉 is parameterized by anobject identity variable
` that uniquely identifies the object. All aliases of the object have
types with the same object identity variable, but other unpacked
objects of the same class have types with different object identity

1 For simplicity, we omit BIL’s value classes and managed pointers from
Mobile, but otherwise include all BIL types and instructions.

Types τ ::= µ | C〈`〉
Untracked types µ ::= void | int32 | C〈?〉 | Rep

C
〈H〉

Class names C

Object identity variables `

History abstractions H ::= ε | e |H1H2 |H1 ∪H2 |Hω |
θ |H1 ∩H2

History abstraction variables θ

Method signatures Sig ::= ∀Γin .((Ψin ,Fr in )(

∃Γout .(Ψout ,Frout , τ))

Typing contexts Γ ::= · | Γ, `:C | Γ, `:C〈?〉 | Γ, θ
Object history maps Ψ ::= 1 |Ψ ? (` 7→ H)

Local variable frames Fr ::= (τ0, . . . , τn)

Figure 3. The Mobile type system

τ � τ

H ⊆ H′

Rep
C
〈H〉 � Rep

C
〈H′〉

τi � τ ′i ∀i ∈ 0..n

(τ0, . . . , τn) � (τ ′0, . . . , τ
′
n)

Dom(Ψ) = Dom(Ψ′) Ψ(`) ⊆ Ψ′(`) ∀` ∈ Dom(Ψ)

Ψ � Ψ′

Figure 4. Mobile subtyping

variables. The typesC〈?〉 of packed classes and security-irrelevant
classes do not include object identity variables, and their instances
are therefore not distinguishable by the type system. We consider
Mobile terms to be equivalent up to alpha conversion of bound
variables.

The typesRep
C
〈H〉 of runtime state values are parameterized

both by the class typeC of the object to which they refer and by a
history abstractionH—anω-regular expression (plus variables and
intersection) that denotes a set of traces. In such an expression,ω
denotes finite or infinite repetition.

Closed (i.e., variable-less) history abstractions conform to a
subset relation; we writeH1 ⊆ H2 if the set of traces denoted
by H1 is a subset of the set of traces denoted byH2. This subset
relation induces a natural subtyping relation� given in Figure 4.
Observe that the subtyping relation in Figure 4 does not recognize
class subtyping of security-relevant classes. We leave support for
subtyping of security-relevant classes to future work.

Type variables in Mobile types are bound by typing contexts
Γ, which assign class or package types to object identity variables
` and declare any history abstraction variablesθ. Object identity
variables can additionally appear in object history mapsΨ, which
associate a history abstractionH with each object identity variable
that corresponds to an unpacked, security-relevant object. Since
object identity variables uniquely identify each object instance,
object history maps can be seen as a spatial conjunction (?) [25]
of assertions about the histories of the various unpacked objects in
the heap.

A complete Mobile program consists of:

Class names C

Field types field : (C × f) → µ

Class methods methodbody : (C::m.Sig) → I

Class policies policy : C → H



v ::= result

0 void

i4 integer

` heap pointer

rep
C

(H) runtime state value

o ::= heap elements

objC{fi = vi}
−→e object

pkg(`, rep
C

(H)) filled package

pkg(·) empty package

h ::= `i 7→ oi heap

a ::= (v0, . . . , vn) arguments

s ::= (a0, . . . , an) stack

ψ ::= (h, s) small-step store

Figure 5. The Mobile memory model

We also use the notationfields(C) to refer to the number of fields
in classC. Method signaturesSig will be described in§4.3.

4.2 Operational Semantics

Unlike [15], we provide a small-step operational semantics for
Mobile rather than a large-step semantics, so as to apply the policy
adherence theorems presented in§4.4 to programs that do not
terminate or that enter a bad state.

In Mobile’s small-step memory model, presented in Figure 5,
objects consist not only of an assignment of values to fields but also
a trace−→e that records a history of the security-relevant operations
performed on the object. Although our model attaches a history
trace to each object, we prove in§4.4 that it is unnecessary for the
virtual machine to track and store object traces because well-typed
Mobile code never exhibits a trace that violates the security policy.

The small-step operational semantics of Mobile, given in Fig-
ures 6 and 7, define how a given storeψ and instructionI steps to a
new storeψ′ and instructionI ′, writtenψ, I ψ′, I ′. Rules 13–18
model the behavior of the new instructions introduced by Mobile.
Rule 13 appends evente1 to the sequence of events exhibited on
object`. Rule 14 introduces a new package object to the local con-
text. Rule 15 assigns an object`′ and runtime state valuerep

C
(H)

to the fields of packagè. Rule 16 yields the object and runtime
state value stored in package` and erases̀’s fields.

Rules 17 and 18 use notation not previously defined and there-
fore deserve special note. Runtime operationstestC,k andhcC,k

test runtime state values and construct new runtime state values,
respectively. Rather than fixing these two operations, we allow
Mobile to be extended with unspecified implementations of them.
Different implementations oftestC,k andhcC,k can therefore be
used to allow Mobile to support different collections of security
policies. For example, a Mobile system that supports security poli-
cies expressed as DFA’s might implement runtime state values as
32-bit integers and might support tests that compare runtime state
values to integer constants (to determine which state the DFA is
in). In that case, one could define for eachk ∈ 0..232, hcC,k() = k
andtestC,k(i) = {1 if i = k, else0}. A more powerful (but more
computationally expensive) Mobile system might implement run-
time state values as dynamic data structures that record an object’s
entire trace and might provide tests to examine such structures. In
this paper, we assume only that a countable collection of state value
constructors and tests exists and that this collection adheres to typ-
ing constraints 19, 20, 21, and 22 presented in§4.3.

E ::=[ ] | E I2 I3 cond | E; I2 | E starg n |
v1 . . . vm E I1 . . . In newobj C(µ1, . . . , µm+n+1) |

v1 . . . vm E I1 . . . In callvirt C::m.Sig | E ret |

E ldfld µ C::f | E I2 stfld µ C::f | v1 E stfld µ C::f |

E evt e | E I2 I3 pack | v1 E I3 pack | v1 v2 E pack |

E unpack C, k | E I2 I3 condst C, k |
v1 . . . vm E I1 . . . In newhist C, k

Figure 6. Mobile Evaluation Contexts

ψ, ldc.i4 i4 ψ, i4 (1)

ψ, I ψ′, I′

ψ,E[I] ψ′, E[I′]
(2)

if i4 =0 thenj=3 elsej=2

ψ, i4 I2 I3 cond ψ, Ij

(3)

ψ, I1 I2 while ψ, I1 (I2; (I1 I2 while)) 0 cond (4)

ψ, v; I2 ψ, I2 (5)

0 ≤ j ≤ n

(h, s(v0, . . . , vn)), ldarg j (h, s(v0, . . . , vn)), vj

(6)

0 ≤ j ≤ n

(h, s(v0, . . . , vn)), v starg j 
(h, s(v0, . . . , vj−1, v, vj+1, . . . , vn)), 0

(7)

` 6∈ Dom(h) n = fields(C)

(h, s), v1 . . . vn newobj C(µ1, . . . , µn) 
(h[` 7→ objC{fi = vi|i ∈ 1..n}ε], s), `

(8)

methodbody(C::m.Sig) = I

(h, s), v0 . . . vn callvirt C::m.Sig (h, s(v0, . . . , vn)), I ret
(9)

(h, sa), v ret (h, s), v (10)

h(`) = objC{. . . , f = v, . . .}−→e

(h, s), ` ldfld µ C::f (h, s), v
(11)

h(`) = objC{. . . , f = v, . . .}−→e

(h, s), ` v′ stfld µ C::f (h[` 7→ objC [f 7→ v′]], s), 0
(12)

h(`) = objC{. . .}
−→e

(h, s), ` evt e1 (h[` 7→ objC{. . .}
−→e e1 ], s), 0

(13)

` 6∈ Dom(h)

(h, s),newpackage C (h[` 7→ pkg(·)], s), `
(14)

h(`) = pkg(. . .)

(h, s), ` `′ rep
C

(H) pack (h[` 7→ pkg(`′, rep
C

(H))], s), 0
(15)

h(`) = pkg(`′, rep
C

(H)) 0 ≤ j ≤ n

(h, s(v0, . . . , vn)), ` unpack j �
h[` 7→ pkg(·)], s(v0, . . . , vj−1, rep

C
(H), vj+1, . . . , vn)

�
, `′

(16)

if testC,k(rep
C

(H))=0 thenj=3 elsej=2

ψ, rep
C

(H) I2 I3 condst C, k ψ, Ij

(17)

arity(hcC,k) = n

ψ, v1 . . . vn newhist C, k ψ, hcC,k(v1, . . . , vn)
(18)

Figure 7. Small-step Operational Sematics for Mobile



1 (newobj C()) starg 1;
2 (ldarg 1) evt e1;
3 (ldarg 1) evt e2;
4 (newpackage C) starg 2;
5 (ldarg 2) (ldarg 1) (newhist C, 0) pack;
6 (. . .) (ldarg 2) stfld . . . ;
7 ((ldarg 2) unpack 4) starg 3;
8 (ldarg 3) ((ldarg 4) evt e1) (. . .) condst C, 0

Figure 8. Sample Mobile program

The operational semantics given in Figure 7 are for a single-
threaded virtual machine without support for finalizers. To model
concurrency, one could extend our stacks to consist of multi-
ple threads and add a small-step rule that non-deterministically
chooses which thread to execute next. Finalizers could be modeled
by adding another small-step rule that non-deterministically forks
a finalizer thread whenever an object is unreachable. Our imple-
mentation supports concurrency and finalizers, but to simplify the
presentation, we leave the analysis of these language features to
future work.

4.3 Type System

Mobile’s type system considers each Mobile term to be a linear op-
erator from a history map and frame list (describing the initial heap
and stack, respectively) to a new history map and frame list (de-
scribing the heap and stack yielded by the operation) along with a
return type. That is, we writeΓ ` I : (Ψ;−→Fr )( ∃Γ′.(Ψ′;−→Fr

′
; τ ′)

if term I, when evaluated in typing contextΓ, takes history mapΨ
and frame list−→Fr (in which any typing variables are bound in con-
text Γ) to new history mapΨ′ and new frame list−→Fr

′
, and yields

a value of typeτ ′ (if it terminates). Any new typing variables ap-
pearing in−→Fr

′
andτ ′ are bound in contextΓ′. A method signature

(see Figure 3) is the type assigned to the term comprising its body.
Below, we provide an informal description of Mobile’s typing

rules by walking the type-checking algorithm through the sample
Mobile program given in Figure 8. A complete list of typing rules
is stated formally in the appendix.

Line 1 of the sample program creates a new object of class
C and stores it in local register 1. When a new security-relevant
object is created, Mobile’s type system assigns it a fresh object
identity variable`. The return type of the newly created object is
thusC〈`〉 and the new history map yielded by the operation satisfies
Ψ′(`) = ε; that is, new objects are initially assigned the empty
trace.

As security-relevant events are performed on the object, the
type system tracks these changes by statically updating its history
map to append these new events to the sequence it recorded in
its history map. So for example, after processing lines 2–3 of the
sample program, which perform eventse1 ande2 on the object in
local register 1, the type-checker’s new history map would satisfy
Ψ′(`) = e1e2. At each point that a security-relevant event is
performed, the type system ensures that the new trace satisfies
a prefix of the security policy. For example, when type-checking
line 3, the type-checker would verify thate1e2 ⊆ pre(policy(C)),
wherepolicy(C) denotes the set of acceptable traces assigned by
the security policy to classC, andpre(policy(C)) denotes the set
of prefixes of members of setpolicy(C).

Security-relevant objects of typeC〈`〉 are like typical objects
except that they are not permitted to escape to the heap. That is,
they cannot be assigned to object fields. In order to leak a security-
relevant object to the heap, a Mobile program must first store it in
a package using apack instruction. This requires three steps: (1)
A package must be created via anewpackage instruction. (2) A
runtime state value must be created that accurately reflects the state

of the object to be packed. This is accomplished via thenewhist
instruction, which is described in more detail below. (3) Finally,
the pack operation is used to store the object and the runtime
state value into the package. Lines 4 and 5 of the sample program
illustrate these three steps. Line 4 creates a new package and stores
it in local register 2. Line 5 then fills the package using the object
in local register 1 along with a newly created runtime state value.

In order for Mobile’s type system to accept apack operation,
it must be able to statically verify that the runtime state value
is an accurate abstraction of the object being packed. That is, if
the runtime state value has typeRep

C
〈H〉, then the type system

requires thatΨ(`) ⊆ H where` is the object identity variable
of the object being packed. Additionally, since packed objects are
untracked and therefore might continue to exist until the program
terminates, packed objects must satisfy the security policy. That is,
we require thatΨ(`) ⊆ policy(C).

Packages that contain security-relevant objects can leak to the
heap, as illustrated by line 6 of the sample program, which stores
the package to a field of some other object. Since only packed
objects can leak to the heap, the restriction that packed objects must
be in a policy-adherent state is a potential limitation of the type
system. That is, it might often be desirable to leak an object that is
not yet in a policy-adherent state to the heap, but later retrieve it and
restore it to a policy-adherent state before the program terminates.
In §5 we show how Mobile implementations can use finalizer code
to avoid this restriction and leak objects to the heap even when they
are not yet in a policy-adherent state.

After apack operation, the type system removes object identity
variable` from the history map. Hence, after line 5 of the sample
program,Ψ′(`) is undefined and the object that was packed be-
comes inaccessible. If the program were to subsequently attempt
to load from local register 1 (before replacing its contents with
something else), the type-checker would reject the code because
that register now contains a value with an invalid type. Object iden-
tity variable` can therefore be thought of as a capability that has
been revoked from the local scope and given to the package.

In order to perform more security-relevant events on an object,
a Mobile program must first reacquire a capability for the object by
unpacking the object from its package via anunpack instruction.
Line 7 of the sample program unpacks the package in local regis-
ter 2, storing the extracted object in local register 3 and storing the
runtime state value that was packaged with it in local register 4.
Since packages and the objects they contain are not tracked by the
type system, the type system cannot statically determine the history
of a freshly unpacked object. All that is statically known is that the
runtime state value that will be yielded at runtime by theunpack
instruction will be an accurate representation of the unpacked ob-
ject’s history. To reflect this information statically, the type system
assigns a fresh object identity variable`′ to the unpacked object
and a fresh history variableθ to the unknown history. The unpacked
object and runtime state value then have typesC〈`′〉 andRep

C
〈θ〉,

respectively, and the new history map satisfiesΨ′(`′) = θ. The
typeC〈?〉 of a package can hence be thought of as an existential
type binding type variables̀′ andθ.

If the sample program were at this point to perform security-
relevant evente on the newly unpacked object, Mobile’s type sys-
tem would reject because it would be unable to statically verify
thatθe ⊆ policy(C) (since nothing is statically known about his-
tory θ). However, a Mobile program can perform additionalevt
operations on the object by first dynamically testing the runtime
state value yielded by theunpack operation. If a Mobile program
dynamically tests a value of typeRep

C
〈θ〉, Mobile’s type system

can statically infer information about historyθ within the branches
of the conditional. For example, if acondst instruction is used
to test a value with typeRep

C
〈θ〉 for equality with a value of type



Rep
C
〈e1e2〉, then in the positive branch of the conditional, the type

system can statically infer thatθ = e1e2. If policy(C) = (e1e2)
ω,

then a Mobile program could executeI evt e1 within the positive
branch of such a conditional (whereI is the object that was un-
packed), becausee1e2e1 ⊆ pre((e1e2)

ω); but the type-checker
would reject a program that executedI evt e2 in the positive
branch, sincee1e2e2 6⊆ pre((e1e2)

ω).
Mobile supports many possible schemes for representing histo-

ries at runtime and for testing them, so rather than fixing particular
operations for constructing runtime state values and particular op-
erations for testing them, we instead assume only that there exists a
countable collection of constructorsnewhist C, k and condition-
alscondst C, k for all integersk, that construct runtime state val-
ues and test runtime state values (respectively) for objects of class
C. We then abstractly defineHCC,k(. . .) to be the typeRep

C
〈H〉

of a history value constructed using constructork for security-
relevant classC, and we definectx+

C,k(H,Ψ) andctx−C,k(H,Ψ)
to be the object history maps that refineΨ in the positive and nega-
tive branches (respectively) of a conditional that performs testk on
a history value of typeRep

C
〈H〉. Mobile supports any such refine-

ment that is sound in the sense that

testC,k(H) = 0 =⇒ Ψ � ctx−C,k(H,Ψ)(`) (19)

and

testC,k(H) 6= 0 =⇒ Ψ � ctx+
C,k(H,Ψ)(`) (20)

We further assume that each history type constructorHCC,k(. . .)
accurately reflects its runtime implementation, in the sense that
for all history value typesRep

C1
〈H1〉, . . . ,Rep

Cn
〈Hn〉 such that

n = arity(HCC,k), there exists someH such that

HCC,k(Rep
C1
〈H1〉, . . . ,Rep

Cn
〈Hn〉) = Rep

C
〈H〉 (21)

and

hcC,k(rep
C1

(H1), . . . , rep
Cn

(Hn)) = rep
C

(H) (22)

In the sample program, suppose that history value construc-
tor newhist C, 0 takes no arguments and yields a runtime value
that represents historye1e2; and suppose that conditional test
condstC, 0 compares a runtime state value to the value that repre-
sents historye1e2. Formally, suppose thatHCC,0() = Rep

C
〈e1e2〉

andctx+
C,0(θ,Ψ) = Ψ[θ 7→ e1e2]. Thus, in the positive branch

of such a test, the type-checker’s object history map can be refined
by substitutinge1e2 for any instances of the history variable be-
ing tested. Then ifpolicy(C) = (e1e2)

ω, a Mobile type-checker
would accept the sample program. In the positive branch of the
conditional in line 8, the type-checker would infer that the object in
local register 4 has historye1e2, and therefore it is safe to perform
evente1 on it. However, ifpolicy(C) = e1e2e2, then the type-
checker would reject, becausee1e2e1 is not a prefix ofe1e2e2.

In the negative branch of this conditional the type-checker can
infer that the object in local register 4 has a history represented by a
state value other than the one that it was tested against. The history
map could therefore be refined by substituting history variableθ
with the union of all of the history abstractions associated with all
of the other possible runtime state values defined for that object’s
class.

Our implementation of Mobile implements history abstraction
values as integers. Thus, it provides232 newhist operations for
each security-relevant classC, defininghcC,k() = k for all k ∈
0..232 − 1. Testscondst of runtime state values are implemented
as equality comparisons between the integer runtime state value to

be tested and an integer constant. Thus, we define

testC,k(rep
C

(θ)) =

(
1 if rep

C
(θ) = k

0 otherwise

ctx+
C,k(θ,Ψ) = Ψ[θ 7→ θ ∩Hk]

ctx−C,k(θ,Ψ) = Ψ[θ 7→ θ ∩ (∪i6=kHi)]

for each integerk ∈ 0..232 − 1, whereHk is a closed history ab-
straction statically assigned to integer constantk. The assignments
of closed history abstractionsHk to integersk are not trusted, so
this mapping can be defined by the Mobile program itself (e.g., in
settings where self-monitoring programs are produced by a com-
mon rewriter or where separately produced programs do not ex-
change objects) or by the policy-writer (in settings where the map-
ping must be defined at a system global level for consistency).

The above scheme allows a Mobile program to represent object
security states at runtime with a security automaton of232 states or
less. Each state of the automaton is assigned an integer constantk,
and history abstractionHk would denote the set of traces that cause
the automaton to arrive in statek.

4.4 Policy Adherence of Mobile Programs

The operational semantics of Mobile presented in§4.2 permit
untyped Mobile programs to enter bad terminal states—states in
which the Mobile program has not been reduced to a value but
no progress can be made. For example, an untyped Mobile pro-
gram might attempt to load from a non-existent field or attempt to
unpack an empty package (in which case no small-step rule can
be applied). Mobile’s type system presented in§4.3 prevents both
policy violations and bad terminal states, except that it does not
preventunpack operations from being performed on empty pack-
ages. This reflects the reality that in practical settings there will
always be bad terminal states that are not statically preventable.
We prove below that Mobile programs well-typed with respect to
a security policy will not violate the security policy when executed
even if they enter a bad state.

Formally, we define well-typed by

Definition 1. A methodC::m.Sig with Sig =∀Γin .(Ψin ,Fr in)(
∃Γout .(Ψout ,Frout , τ) is well-typedif and only if there exists a
derivation for the typing judgmentΓin ` I : (Ψin ,Fr in) (
∃Γout .(Ψout ,Frout , τ) whereI = methodbody(C::m.Sig).

Definition 2. A Mobile program iswell-typedif and only if (1)
for all C::m.Sig ∈ Dom(methodbody), methodC::m.Sig is
well-typed, and (2) there exists a methodCmain ::main.Sigmain ∈
Dom(methodbody) with Sigmain = ∀Γin .(Ψin , (τ1, . . . , τn))(
∃Γout .(Ψout ,Frout , τout) such that for all substitutionsσ : θ →−→e and all object identity variables̀:C ∈ (Γin ,Γout), if Ψout(`) =
H thenσ(H) ⊆ policy(C).

Part 2 of definition 2 captures the requirement that a Mobile pro-
gram’s entry method must have a signature that complies with the
security policy on exit.

Policy violations are defined differently depending on whether
the program terminates normally. If the program terminates nor-
mally, Mobile’s type system guarantees that the resulting heap will
be policy-adherent; whereas if the program does not terminate or
enters a bad state, Mobile guarantees only that the heap at each
evaluation step will be prefix-adherent, where policy- and prefix-
adherence are defined as follows:

Definition 3 (Policy Adherent). A heaph is policy-adherentif,
for all class objectsobjC{. . .}

−→e ∈ Rng(h),−→e ⊆ policy(C).

Definition 4 (Prefix Adherent). A heaph is prefix-adherentif, for
all class objectsobjC{. . .}

−→e ∈ Rng(h),−→e ⊆ pre(policy(C)).



To formalize the theorem, we first define a notion of consistency
between a static typing context and a runtime memory state. We say
that a memory storeψ respectsan object identity contextΨ and a
list of frames−→Fr , written Γ ` ψ : (Ψ;−→Fr ) if all object fields and
stack slots inψ have values of appropriate types, and the heap inψ
is prefix-adherent. (See [16] for a formal definition.) The following
two theorems then establish that well-typed Mobile programs do
not violate the security policy.

Theorem 1 (Terminating Policy Adherence). Assume that a
Mobile program is well-typed, and that, as per Definition 2, its
main method has signatureSigmain =∀Γin .(Ψin , (τ1, . . . , τn))(
∃Γout .(Ψout ,Frout , τout). If Γin ` ψ : (Ψin ;Fr) holds and if
ψ,methodbody(Cmain ::main.Sig) ∗(h′, s′), v holds,thenh′ is
policy-adherent.

Proof. Omitted for brevity. See [16].

Theorem 2 (Non-terminating Prefix Adherence). Assume that
a Mobile program is well-typed, and assume thatΓ ` I :
(Ψ;−→Fr ) ( ∃Γ′.(Ψ′;−→Fr

′
; τ) and Γ ` (h; s) : (Ψ;−→Fr ) hold. If

h is prefix-adherent and(h, s), I n(h′, s′), I ′ holds, thenh′ is
prefix-adherent.

Proof. Omitted for brevity. See [16].

An important consequence of both of these theorems is that
Mobile can be implemented on existing .NET systems without
modifying the memory model to store object traces at runtime.
Since a static type-checker can verify that Mobile code is well-
typed, and since well-typed code never exhibits a trace that violates
the security policy, the runtime system need not store or monitor
object traces to prevent security violations.

5. Implementation
Our prototype implementation of Mobile consists of a type-checker
for Mobile’s type system extended to the full managed subset of
Microsoft’s .NET CIL (minus reflection). The type-checker was
written in Ocaml (about one thousand lines of code) and uses
Microsoft’s .NET ILX SDK [30] to read and manipulate .NET
bytecode binaries. Mobile programs are .NET CIL programs with
typing annotations encoded as .NET method attributes. The Mobile
type-checker reads these (untrusted) annotations and verifies them
in the course of type-checking.

Our implementation allows security policies to identify method
calls as security-relevant events. Thus, security policies can con-
strain the usage of resources provided by the CLR by monitoring
CLR method calls and the objects they return. Our type-checker
can, in principle, regard any CIL instruction as a security-relevant
event, but we leave practical investigation of this feature to future
work.

Operationspack and unpack are implemented as method
calls to the (very small) trusted C# library given in Figure 9. Ob-
serve that C#’slock construct is used to make both operations
atomic. History abstraction values are implemented as integers.
Thus, ournewhist operation is simply aldc.i4 instruction that
loads an integer constant onto the evaluation stack. Policies can
statically declare for each integer constant a closed history abstrac-
tion that integer represents when used as a runtime state value. Tests
of runtime state values consist of equality comparisons with inte-
ger constants in the manner described in§4.3. As described in§4.3,
this implementation suffices to support IRM’s that model security
policies as finite-state security automata.

The type-checker must verify subset relations over the language
of history abstractions given in Figure 3. Although deciding subset
for ω-regular expressions with variables and intersection is not

class Package {
private object obj;
private int state;

public void Pack(object o, int s) {
lock (this) { obj=o; state=s; }

}

public object Unpack(ref int s) {
lock (this) {

object o=obj;
if (o==null) throw new EmptyPackage();
obj=null; s=state;
return o;

}
}

}

Figure 9. Implementation ofpack andunpack

tractable in general, the task is simplified by observing that real
Mobile code only introduces history variables at the beginnings
of expressions (when an object is unpacked) and only introduces
intersections that involve a variable and a closed history abstraction
(when a runtime state value is tested). The resulting sub-language
can be decided using a simple regular expression subset algorithm
(proof omitted for brevity).

Our type-checker also recognizes method annotations attached
to finalizers of security-relevant classes. A finalizer’s precondition
must be satisfied whenever an object of its class escapes to the
heap (i.e., when it is packed), since at any point after that, its
package object could become orphaned and then garbage-collected.
By the time a program terminates, all of its objects are guaranteed
to satisfy their finalizers’ postconditions, since at that point any
remaining objects will be garbage-collected. This allows an IRM
to leak security-relevant objects to the heap (in packages) even
when they are not yet in a policy-adherent state, as long as the
object’s finalizer suffices to restore it to a policy-adherent state once
garbage-collection occurs.

To test our implementation, we wrote a simple rewriter like that
described in§3, and used it to enforce a security policy that al-
lows each .NET network socket object to accept at mostn con-
nections during the program’s lifetime (wheren is a parameter
specified by the policy-writer). Such a policy might be used, for
example, to force applications to relinquish control of network
ports after a certain amount of activity. We applied this policy to
a small multithreaded webserver written in C#. The original appli-
cation binary was 20K in size and rewriting did not alter its size.
(Padding introduced by the CLI binary format masked the small
overhead introduced by additional instructions and annotations.)
Hand-counting the material inserted by the rewriter revealed ap-
proximately 83 bytes in additional instructions and 117 bytes in
annotations. Rewriting took 0.12 seconds and type-checking took
0.09 seconds on a 1.8GHz Pentium. We benchmarked both the orig-
inal and rewritten webservers by using WebStone to simulate two
clients retrieving five webpages ranging in size from 500 bytes to
5 megabytes. WebStone reported that the rewritten webserver ex-
hibited an average throughput rate that was 99.97% of the original
webserver’s.

The aforementioned test is obviously not a definitive evaluation
of the feasibility of automated rewriting; much work remains to
be done in terms of evaluating the approach on richer policies and
applications. However, we consider it to be preliminary evidence
that rewriting can be automated in a way that produces acceptable
annotations.



6. Conclusions and Future Work
Mobile’s type system and the theorems presented in§4.4 show
that a common style of IRM, in which extra state variables and
guards that model a security automaton have been in-lined into the
untrusted code, can be independently verified by a type-checker,
eliminating the need to trust the rewriter that produced the IRM.
We verify policies that are universally quantified over unbounded
collections of objects—that is, policies that require each object to
exhibit a history of security-relevant events that conforms to some
stated property. The language of security policies is left abstract
and could consist of DFA’s, LTL expressions, or any computable
language of finite and infinite event sequences.

Our implementation of Mobile for managed Microsoft .NET
CIL expresses security policies asω-regular expressions. We verify
such policies in the presence of exceptions, concurrency, finalizers,
and non-termination, demonstrating that Mobile can be scaled to
real type-safe, low-level languages.

Our presentation of Mobile has not addressed issues of object
inheritance of security-relevant classes. Future work should exam-
ine how to safely express and implement policies that require ob-
jects related by inheritance to conform to different properties. A
type-checker for such a system would need to identify when a type-
cast at runtime could potentially lead to a violation of the policy and
provide a means for policy-adherent programs to perform necessary
typecasts.

Another open problem is how to support a wider range of
IRM implementations. Mobile supports only a specific (but typical)
treatment of runtime state, wherein each security-relevant object
is paired with a dynamic representation of its state every time it
is leaked to the heap. In some settings, it may be desirable to
implement IRM’s that store an object’s dynamic state differently,
such as in a separate array rather than packaged together with
the object it models. Type systems for coordinated data structures
[26] could potentially be leveraged to enforce invariants over these
decoupled objects and states.

We chose a type system for Mobile that statically tracks con-
trol flow in a data-insensitive manner, withω-regular expressions
denoting sets of event sequences. This approach is appealing be-
cause there is a natural rewriting strategy (outlined in§3) whereby
well-typed Mobile code can be automatically generated from un-
trusted CIL code. A more powerful type system could employ a
richer language like Hoare Logic [18] to track data-sensitive control
flow. This could allow clever rewriters to eliminate additional run-
time checks by statically proving that they are unnecessary. How-
ever, formulating a sound and complete Hoare Logic for .NET that
includes objects and concurrency is challenging; furthermore, the
burden of producing useful proofs in this logic would be pushed
to the rewriter. Future work should investigate rewriting strategies
that could make such an approach worthwhile.

Finally, not every enforceable security policy can be couched
as a computable property that is universally quantified over object
instances. For example, one potentially useful policy is one that
requires that for every file object opened for writing, there exists an
encryptor object to which its output stream has been linked. Such a
policy is not supported by Mobile because it regards both universal
and existentially quantified properties that relate multiple object
instances. Future work should consider how to implement IRM’s
that enforce such policies, and how these implementations could
be type-checked so as to statically verify that the IRM satisfies the
security policy.
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Appendix
The following is a formal statement of Mobile’s typing rules.

Γ ` ldc.i4 n : (Ψ;−→Fr )( (Ψ;−→Fr ; int32)
(23)

Γ ` I1 : (Ψ;−→Fr )( ∃Γ1.(Ψ1;−→Fr 1; int32)

Γ,Γ1 ` Ii : (Ψ1;−→Fr 1)( ∃Γ′.(Ψ′;−→Fr ′; τ) ∀i ∈ {2, 3}
Γ ` I1 I2 I3 cond : (Ψ;−→Fr )( ∃Γ1,Γ′.(Ψ′;

−→Fr ′; τ)
(24)

Γ,Γ′ ` I1 I2 0 cond : (Ψ;−→Fr )( ∃Γ′.(Ψ;−→Fr ;void)

Γ,Γ′ ` I1 I2 while : (Ψ;−→Fr )( ∃Γ′.(Ψ;−→Fr ;void)
(25)

Γ ` I1 : (Ψ;−→Fr )( ∃Γ1.(Ψ1;−→Fr 1;void)

Γ,Γ1 ` I2 : (Ψ1;−→Fr 1)( ∃Γ2.(Ψ′;
−→Fr ′; τ)

Γ ` I1; I2 : (Ψ;−→Fr )( ∃Γ1,Γ2.(Ψ′;
−→Fr ′; τ)

(26)

` ∈ Dom(Ψ′) field(C, f) = µ

Γ ` I : (Ψ;−→Fr )( ∃Γ′.(Ψ′;−→Fr ′;C〈`〉)
Γ ` I ldfld µ C::f : (Ψ;−→Fr )( ∃Γ′.(Ψ′;−→Fr ′;µ)

(27)

Γ ` I1 : (Ψ;−→Fr )( ∃Γ1.(Ψ1;−→Fr 1;C〈`〉)
Γ,Γ1 ` I2 : (Ψ1;−→Fr 1)( ∃Γ2.(Ψ′;

−→Fr ′;µ)
` ∈ Dom(Ψ′)
field(C, f) = µ

Γ ` I1 I2 stfld µ C::f : (Ψ;−→Fr )( ∃Γ1,Γ2.(Ψ′;
−→Fr ′;void)

(28)

0 ≤ j ≤ n

Γ ` ldarg j : (Ψ;−→Fr (τ0, . . . , τn))( (Ψ;−→Fr (τ0, . . . , τn); τj)
(29)

Γ ` I : (Ψ;−→Fr )( ∃Γ′.(Ψ′;−→Fr ′(τ0, . . . , τn); τ) 0 ≤ j ≤ n

Γ ` I starg j : (Ψ;−→Fr )(
∃Γ′.(Ψ′;−→Fr ′(τ0, . . . , τj−1, τ, τj+1, . . . , τn);void)

(30)

Γ,Γ1, . . . ,Γi−1 ` Ii : (Ψi−1;−→Fr i−1)(
∃Γi.(Ψi;

−→Fr i;µi) ∀i ∈ 1..n
n = fields(C) ` 6∈ Dom(Γ,Γ1, . . . ,Γn) ε ∈ pre(policy(C))

Γ ` I1 . . . In newobj C(µ1, . . . , µn) :
(Ψ0;−→Fr 0)( ∃Γ1, . . . ,Γn, `:C.(Ψn ? (` 7→ ε);−→Fr n;C〈`〉)

(31)

Γ0, . . . ,Γj ` Ij : (Ψj ,
−→Fr j)(∃Γj+1.(Ψj+1,

−→Fr j+1, τj) ∀j∈0..n
τ0 = C〈`〉 `∈Dom(Ψn+1) C::m.Sig∈Dom(methodbody)

Γ0, . . . ,Γn ` Sig <: (Ψin , (τ0, . . . , τn))(∃Γout .(Ψout ,Frout , τ)
Ψn+1 = Ψunused ?Ψin

Γ0 ` I0 . . . In callvirt C::m.Sig :
(Ψ0,

−→Fr0)(∃Γ1, . . . ,Γn+1,Γout .(Ψunused ?Ψout ,
−→Frn+1, τ)

(32)

He ⊆ pre(policy(C))

Γ ` I : (Ψ;−→Fr )( ∃Γ′.(Ψ′ ? (` 7→ H);−→Fr ′;C〈`〉)
Γ ` I evt e : (Ψ;−→Fr )( ∃Γ′.(Ψ′ ? (` 7→ He);−→Fr ′;void)

(33)

` 6∈ Dom(Γ)

Γ ` newpackage C : (Ψ;−→Fr )( ∃`:C〈?〉.(Ψ;−→Fr ;C〈?〉)
(34)

H ⊆ H′ ⊆ policy(C)
Γ ` I1 : (Ψ;−→Fr )( ∃Γ1.(Ψ1;−→Fr 1;C〈?〉)

Γ,Γ1 ` I2 : (Ψ1;−→Fr 1)( ∃Γ2.(Ψ2;−→Fr 2;C〈`〉)
Γ,Γ1,Γ2 ` I3 : (Ψ2;−→Fr 2)(∃Γ3.(Ψ′?(` 7→H);−→Fr ′; Rep

C
〈H′〉)

Γ ` I1 I2 I3 pack : (Ψ;−→Fr )( ∃Γ1,Γ2,Γ3.(Ψ′;
−→Fr ′;void)

(35)

` 6∈ Dom(Ψ′) θ 6∈ Dom(Γ)

Γ ` I : (Ψ;−→Fr )( ∃Γ′.(Ψ′;−→Fr ′(τ0, . . . , τn);C〈?〉)
Γ ` I unpack j : (Ψ;−→Fr )( ∃Γ′, `:C, θ.
(Ψ′, ` 7→ θ;−→Fr ′(τ0, . . . , τj−1,Rep

C
〈θ〉, τj+1, . . . , τn);C〈`〉)

(36)

Γ ` I1 : (Ψ;−→Fr )( ∃Γ1.(Ψ1;−→Fr 1; Rep
C
〈H〉)

Γ,Γ1 ` I2 : (ctx+
C,k(H,Ψ1);−→Fr 1)( ∃Γ′.(Ψ′;−→Fr ′; τ)

Γ,Γ1 ` I3 : (ctx−C,k(H,Ψ1);−→Fr 1)( ∃Γ′.(Ψ′;−→Fr ′; τ)

Γ ` I1 I2 I3 condst k : (Ψ;−→Fr )( ∃Γ1,Γ′.(Ψ′;
−→Fr ′; τ)

(37)

Γ ` Ii : (Ψi−1;
−→Fr i−1)(∃Γi.(Ψi;

−→Fr i; Rep
Ci
〈Hi〉) ∀i∈1..n

Γ ` I1 . . . In newhist C, k : (Ψ0;−→Fr 0)( ∃Γ1, . . . ,Γn.
(Ψn;−→Fr n;HCC,k(Rep

C1
〈H1〉, . . . ,Rep

Cn
〈Hn〉))

(38)

Γ1,Γ′ ` I : (Ψ1;−→Fr 1)( ∃Γ2.(Ψ2;−→Fr 2; τ)

Ψ′1 � Ψ1
−→Fr ′1 �

−→Fr 1 Ψ2 � Ψ′2
−→Fr 2 � −→Fr ′2 τ � τ ′

Γ1,Γ′ ` I : (Ψ′1;−→Fr ′1)( ∃Γ2,Γ′.(Ψ′2;−→Fr ′2; τ ′)
(39)

Γ ` 0 : (Ψ;−→Fr )( (Ψ;−→Fr ;void)
(40)

Γ ` i4 : (Ψ;−→Fr )( (Ψ;−→Fr ; int32)
(41)

Ψ = Ψ′ ? (` 7→ H)

Γ, `:C ` ` : (Ψ;−→Fr )( (Ψ;−→Fr ;C〈`〉)
(42)

Γ, `:C〈?〉 ` ` : (Ψ;−→Fr )( (Ψ;−→Fr ;C〈?〉)
(43)

Γ ` rep
C

(H) : (Ψ;−→Fr )( (Ψ;−→Fr ; Rep
C
〈H〉)

(44)

Γ ` I : (Ψ;−→Fr )( ∃Γ′.(Ψ′;−→Fr ′Fr0; τ)

Γ ` I ret : (Ψ;−→Fr )( ∃Γ′.(Ψ′;−→Fr ′; τ)
(45)

JudgmentΓ ` Sig1 <: Sig2 in rule 32 asserts thatSig1 alpha-
varies toSig2.
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